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Abstract. Sign Language Assessment (SLA) tools are useful to aid in
language learning and are underdeveloped. Previous work has focused
on isolated signs or comparison against a single reference video to assess
Sign Languages (SL). This paper introduces a novel SLA tool designed to
evaluate the comprehensibility of SL by modelling the natural distribu-
tion of human motion. We train our pipeline on data from native signers
and evaluate it using SL learners. We compare our results to ratings from
a human raters study and find strong correlation between human ratings
and our tool. We visually demonstrate our tools ability to detect anoma-
lous results spatio-temporally, providing actionable feedback to aid in SL
learning and assessment.
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1 Introduction

Sign Languages (SL) are nuanced and complex visual-gestural languages that
are the primary form of communication for millions of deaf 6 people worldwide.
With the advancements in deep learning and computer vision, there has been a
growing interest in modelling SL. The majority of methods focus on classification,
namely for the recognition and translation of sign [4,30], rather than improving
or assessing SL proficiency. The standardisation of Sign Language Assessment
(SLA) is a challenging research topic due to the many nuances that affect its
legibility [14].
6 We follow the recent convention of abandoning a distinction between Deaf and deaf

and use the latter term also to refer to (deaf) members of the sign language com-
munity [33,38].
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The study of Sign Language Linguistics is still in its infancy, especially when
compared to spoken languages. SL have no standardised written form, they are
conveyed via a combination of manual and non-manual features [41]. While the
manual features include the location, orientation, and movement of the arms and
hands; non-manual features refer to facial expressions, body posture, head move-
ment, and eye gaze. Signing involves simultaneous combinations of these features,
each influencing the meaning of a sign, adding multiple layers of linguistic com-
plexity. In continuous sequences, co-articulation is also common factor [42]. This
includes temporal overlap between signs in a sequence leading to blending, spa-
tial influence where the location of one sign may impact the starting location of
the following signs, and handshape modifications based on context. Given the
rich and complex nature of SL, skilled teachers are needed to assess and quantify
signing proficiency.

In this paper we focus on SL assessment, proposing a tool to aid human
teachers to evaluate continuous SL and to improve efficiency in evaluation and
feedback. Teaching systems for SL that incorporate feedback mechanisms have
been proposed using classification to determine correct from incorrect repetitions
or to regress scores directly [49,54]. However, most approaches are limited to the
assessment of isolated signs [50].

Our work provides an SL assessment tool for continuous sequences that learns
the natural distribution present in human motion. We develop a Skeleton Varia-
tional Autoencoder (SkeletonVAE) to embed signed sequences from multiple na-
tive signers in a compact, lower dimensional subspace. We then apply a Reference
Selection technique over these embeddings to determine the most representative
sequence from the collection of sequences. We finally model the Motion Envelope
by aligning all the sequences to the reference and learning the distribution over
the embedded data using a Gaussian Process (GP).

We test our model using data from SL learners and evaluate its performance
against ratings collected from a human raters study. We demonstrate that our
model can quantitatively evaluate the production of sequences achieving similar
results to a manual rater. Furthermore, we show that our system can determine
where and by what distance a learner falls outside of the natural acceptable
variation in human motion for signed sequences.

2 Related Work

Sign Language Recognition, Translation and Production. Computa-
tional approaches to SL modelling have been the focus of researchers for over 30
years [47]. Preliminary research focused on isolated Sign Language Recognition
(SLR) using statistical methods [12], aiming to classify isolated signs. The ad-
vent of deep learning techniques has enabled the development of continuous SLR
methods operating over continuous sequences, implemented using CNNs [29,30],
RNNs [6, 31] and more recently Transformers [5]. Some researchers operate in
the pixel space directly whereas others choose to use skeleton pose, optical flow,
or a combination of modalities [22,44].
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More recently the field has moved towards Sign Language Translation (SLT)
[4], aiming to translate continuous sign to written spoken language sentences
rather than just recognising the consistent signs. SLT is a more challenging
task than SLR due to the grammatical and ordering differences between SL and
spoken language. Transformer-based approaches have achieved state-of-the-art
performance, learning the recognition and translation tasks jointly [5].

Most SLT approaches require intermediate representations and while tradi-
tional approaches often rely on linguistic representations such as gloss [4, 5] or
HamNoSys [28, 53], such annotation is expensive to create. To overcome this
bottleneck, recent research has shifted towards gloss-free translation [11, 52, 55,
58,59].

On the other hand, Sign Language Production (SLP) aims to produce SL
videos from written spoken language sentences. Current approaches to SLP use
Transformer-based architectures, extending SLT to include the production of
digital avatars [23], photo-realistic outputs using Generative Adversarial Net-
works [43,46] or diffusion models [8].

Language Learning and Assessment. Automated tools for language learn-
ing have been widely developed for written and spoken languages. Mainstream
tools such as Duolingo [7] have proven their effectiveness in increasing learn-
ing efficiency through gamification. There are only a few studies that utilize
gamification for SL which aim to teach isolated signs [2, 45].

Sign Language Assessment (SLA) systems that provide more detailed feed-
back have also been introduced [48–50]. Tornay et al. [50] provide a scoring
mechanism alongside a visualisation showing the performed sign against a refer-
ence skeleton, providing actionable feedback. However, this is limited to isolated
signs. Wen et al. [54] introduced an approach for SL assessment over continuous
sequences using a two-stage method that integrated domain knowledge from ac-
tion similarity techniques. However, the method relies on a single reference video
to evaluate against and therefore does not account for the natural variation in
human motion during assessment.

The complexity of SL makes its annotation and assessment challenging. An-
notating SL data is extremely time consuming, with one minute of sign taking
between 10 and 30 minutes to annotate [24]. The natural variability in signing
between individuals (often referred to as signer ‘style’ [32]) further complicates
data annotation and quantification of SL proficiency. Human assessment remains
the most reliable method for scoring SL, as teachers can accurately determine
correct sign production despite natural variation between signers [1]. Holzknecht
et al. [18] compare the results of an automated SLA system with ratings from a
human rater study for isolated signs. We compare our approach to human raters
in the context of continuous signed sequences.

Action Quality Assessment. The assessment of SL can be seen as a subdo-
main within the broader field of Action Quality Assessment (AQA), which aims
to evaluate the quality and performance of human actions in various contexts.
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Previous research in AQA has typically focused on macro-level actions [21,36,56]
rather than fine details like individual hand and finger movements. The majority
of these methods compare actions against a single reference and directly regress a
score [21,56]. Some use additional hardware to track human behaviours [34], some
work directly from RGB videos [56], and others use pose representations [36,54].

Morais et al. [36] employ a pose representation for anomaly detection. How-
ever, this method requires high correspondence of movements to be effective,
with performance degrading due to the natural variations in posture between in-
dividuals. Xu et al. [56] rely on meticulously annotated training data to achieve
high accuracy results , making it a highly supervised approach.

Two-stage approaches have emerged offering a more flexible and interpretable
framework for assessing action quality by decoupling feature extraction from the
evaluation process, allowing for more adaptable and insightful AQA systems
[9, 20, 54]. In the domain of SL, Wen et al. [54] proposes a two-stage pipeline
where features are first recovered from video, embedded and aligned to a single
reference using Dynamic Time Warping [40] before assessing sign quality.

Distinct from previous approaches, our unsupervised method accounts for the
natural variation in human motion when assessing action quality by learning the
distribution in motion over multiple expert productions.

3 Method

We present a novel approach for learning the natural distribution of continuous
Sign Language sequences. We first build a SkeletonVAE by uplifting multi-view
video data to a 3D skeleton pose and learning a low-dimensional latent repre-
sentation of pose, capturing the essential characteristics of human movement.
We take our video dataset of sentences with multi-participant productions and
encode them to create a secondary dataset of latent time varying embeddings.
Second, we develop a Reference Selection technique which identifies a reference
production of each sentence based on similarity calculation between all par-
ticipants. Finally, we build a Motion Envelope by aligning each participant’s
sequence to its corresponding sentence reference and model the distribution of
per-dimension embedding trajectories across multiple signers. The pipeline for
this method is shown in Fig. 1.

3.1 SkeletonVAE

Consider N sequences of SL video frames f j,k,ct , where j = {1, 2..., J} sign lan-
guage sentences being executed by k = {1, 2, ...,K} individual signers, and where
t is an individual timepoint ranging t = {1, 2, ..., Tj,k}, such that the total num-
ber of timepoints depends on the signer and the sentence being performed. c
indexes C synchronised cameras that capture all the data together.

We start by extracting Mediapipe [35] 2D poses from a single view for C
cameras over the entire dataset. After this, we implement 3D pose uplift [19]
to regress accurate 3D skeleton data and convert to canonical form by choosing
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Fig. 1: Diagram showing training pipeline for modelling the jth sentence over K signers.
The process takes J example sentences captured with C independent cameras and uses
3D pose uplift to create a set of x poses which are fed into the VAE, encoding the
poses into µ̂ latent means. Reference Selection finds the central signal ˆµref and learns
a distribution over K signers.

fixed bone lengths and applying this scaling via the joint angles. We now have N
sequences of d-dimensional skeleton joint-position data for sign language poses
xj,k
t .

We assume that, within the context of human motion and SL, each pose lies
on some manifold with fewer dimensions than d which we can approximate via a
stochastic mapping pθ(z|xj,k

t ) : x → z where z ∈ RΩ is a latent representation or
embedding. Our goal is to model the time variation of x in terms of its compact
representation z.

We begin by taking the skeleton poses x and embedding them using a Vari-
ational AutoEncoder, which is trained via a process known as variational infer-
ence [3,16,26]. Variational inference is concerned with maximising the Evidence
Lower BOund (ELBO), which forms a lower bound on the negative log-likelihood
of the data under the model:

N−1
N∑
i=1

log pθ(xi) ≤

N−1
N∑
i

(
−Eqϕ(z|xi) [log pθ(xi|z)] + βDKL [qϕ(z|xi)||p(z)]

)
.

(1)

Here, qϕ(z|x) is known as the approximating posterior, which ideally matches
the true posterior p(z|x) which we do not have access to. We therefore assume a
parameterisation for this approximating posterior, and define a prior distribution
p(z). The Kullback-Liebler divergence DKL is then used to create pressure such
that the approximating posterior distribution q resembles this prior, and this
pressure is weighted with a scalar β [16]. Using a β value other than one means
the ELBO cannot technically be fulfilled, but is a hyperparameter determined
by experimental results. For our work the choice of prior is an isotropic Gaussian
with mean µ = 0 and variance σ2 = 1. The parameters ϕ and θ represent the
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neural network parameters for the encoder and decoder respectively, and it is
the encoder and decoder which parameterise the approximating posterior and
conditional likelihood models. As such, each datapoint is encoded as a mean µ̂
and a variance σ̂2 which, via the reparameterisation trick [27], enable sampling
z|xi ∼ N (µ̂i, σ̂

2
i ) which are decoded to reconstructions x̂i. Finally, note that

in Eq. 1, N is the total number of datapoints available, across all J sentences
and K signers (i.e. N = K × J × T for fixed T ). This part of the modeling
process therefore treats the data as independent and identically distributed (the
sequential aspect of the data, as well as the fact we have different sentences being
performed, will be modeled using Gaussian Processes).

LVAE = αL1hands + (1− α)L1body + βDKL (2)

Since hands are high-frequency, low-amplitude signals due to their rapid and
detailed movements compared to the larger, slower movements of the body, they
can be lost in the noise during VAE training. To address this, we use L1 loss
as the reconstruction loss and split the weighting of the loss between the hands
and body. By setting a high α value, the network can better focus on hand re-
construction. Our overall loss function, Eq. (2), is the sum of this reconstruction
loss with the β-scaled KLD. Once we have trained the VAE on all skeleton poses
for the complete dataset, we arrive at a secondary dataset of encodings µ̂j,k

t

where µ̂ represents the conditional mean encoding of the corresponding skeleton
datapoint x.

3.2 Reference Selection

For J sentences, we calculate a cosine similarity matrix comparing the encoded
means µ̂ over K signers. We then average the matrix entries for each k, returning
the average similarity scores of k with reference to all other k’s that produced
j. We choose the highest average similarity signal as our reference signal µ̂j

ref ,
for each sentence. This signal is the central signal and is used as the reference
for the Dynamic Time Warping (DTW) [40] algorithm.

3.3 Motion Envelope

At this stage we use DTW to align the sequences such that Tj,k = T ∗
j ∀k, where

T ∗
j is the length of the reference sequence µ̂j

ref . Each of the aligned sequences
are denoted µ̂∗.

Finally we train a Gaussian Process (GP) [39] for each of the J sentences,
for µ̂∗, across the K individual signers. In other words, we take time-aligned
sequences for a particular sentence and train the GP using the multiple produc-
tions of that sentence by the K signers. The trained model for a specific sequence
j is denoted as Sj :

µ̂∗,j
t ∼ Sj := GP

(
meanj(t), covj(t, t′)

)
, (3)
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where mean is a mean function and cov is a covariance function determining
the covariance between any pair of timepoints t and t′. The GP therefore provides
us with an approximation of the distribution of embedding trajectories for a
particular sentence, across multiple signers.

To train the GP models, we utilise the negative of the marginal log likelihood
(MLL) as our loss function. The negative MLL for the aligned latents µ̂∗,j given
the inputs Tj is defined as:

LGP = − log p(µ̂∗,j |T ∗
j )

= − logN (µ̂∗,j |meanj , covj)

= −1

2

(
µ̂∗,j −meanj

)T (
covj

)−1 (
µ̂∗,j −meanj

)
− 1

2
log

∣∣covj∣∣− N

2
log(2π)

(4)

where N = KjT
∗
j , and Kj is the number of signers that produced sentence

j. By taking the negative of the MLL, we maximise the log likelihood of the
observed data under the GP model, thereby fitting the model to the data in a
way that best explains the observed latents µ̂∗,j .

At inference time we take the embeddings for a test sequence for a specific
j, µ̂test,j and align it to the corresponding µ̂ref such that it becomes µ̂∗

test,j .
We compare this sequence to the multivariate Gaussian posterior of the learnt
model Sj , returning principled uncertainty estimates for each t in the sequence.

4 Experiments

We evaluate our method using real-world SL data from native signers and lan-
guage learners. We first outline our SL Sentence Repetition Test dataset and
discuss the human rating scheme. We provide implementation details and com-
pare our approach to the manual ratings by demonstrating quantitative and
qualitative results.

4.1 Dataset

A recent study suggests that Sentence Repetition Tests (SRTs), which are widely
used as a means of assessment for spoken language, can be applied to SL assess-
ment [13]. SRTs ensure a comprehensive evaluation of signing ability; by requiring
both comprehension and production, they provide a robust measure of language
proficiency in the context of SL. During the testing process, each participant
sees a prerecorded signed sequence video twice and is then asked to repeat it,
i.e., the test taker has to comprehend, process, and produce language [57]. SRTs
often work with a binary concept of correctness [57]. In this work a partial credit
scale is used (as in [51]) in order to provide more informative feedback to the
participant.
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(a) RGB (b) Extracted 3D Skeleton (c) Canonical Skeleton

Fig. 2: Example frame from the dataset showing 2a the RGB frame of a participant
from one of the camera views, 2b the uplifted 3D skeleton, and 2c the bone length
adjusted canonical skeleton.

Table 1: Selection of examples from the Sentence Repetition Test

Sentence ID High German Written Sentence (English Translation)

A Das Essen gestern Abend im Restaurant war schlecht.
(Last night the food in the restaurant was bad.)

E Ich mag diesen Salat gar nicht.
(I don’t like this salad at all.)

L Er/Sie ist nicht da, weil er/sie krank ist.
(He/she is not there because he/she is sick.)

We create our Swiss-German Sign Language (Deutschschweizerische Gebär-
densprache, DSGS) SRT dataset by recording a repetition test across 12 sen-
tences of varying difficulty, determined by the number of signs, as well as mor-
phological and syntactic complexity. The test is taken by a combination of 10
native signers and 14 language learners. Some examples of the sentences are
shown in Tab. 1. We use the data from the native signers as our gold standard
for training our model and the learners’ data for evaluation.

We extract 3D canonical skeleton pose data (as shown in Fig. 2c) for the
dataset, with each pose represented by 61 nodes in 3D Cartesian space. We
sort the native signer data to include only sentences which are produced in the
sentence order matching the initial reference and use this data for training the
GPs model. We evaluate the model using all sentences produced by the language
learners.

4.2 Manual Ratings

The data is analysed by eight native raters of DSGS using rating criteria designed
to provide a comprehensive assessment of signing accuracy and fluency [17].
Raters are trained on a standardised rubric and evaluate videos of the sentences
across six criteria: manual components, mouth components, eyebrow movements,
head movements, eye gaze, and sentence structure.
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Each criterion is assessed on a three-point scale, allowing for more nuanced
feedback compared to a binary system. To ensure reliability, 14 videos are des-
ignated as anchor videos and are rated by all eight raters. The remaining 97
videos are assessed by two raters each in an overlapping design, with measures
taken to balance video allocation and minimise potential bias. Analysis of the
ratings provides inter-rater reliability, allowing us to determine the most reliable
criterion for assessment.

For our experiments we choose to evaluate against the criterion for manual
features on the sign produced by the language learners. Each rater provides a
score for each manual component of the sign in the sentence. We take the mean
of the ratings across the components in the sentence for each rater; and then
take the mean across the raters that rated the sentence-learner pair. We repeat
this for every sentence and learner. This provides a single score, 1 to 3, for each
learner, for each sentence, that can be used for comparison with the output of
our system.

4.3 Implementation Details

The encoder of our VAE consists of an input layer of size 183, followed by two
hidden layers with sizes 100 and 50 perceptrons respectively. We implement
fully connected layers and ReLU activation functions at the output of each layer
except the final output layer, where we use a TanH function with its output
scaled by a value of 6 to map the output of the network to the coordinate space
of our pose data. The output of the encoder is split into two separate fully
connected layers, each of size 10, representing the mean and log-variance of the
latent space distribution. The mean and log-variance values are combined using
the reparameterisation trick to calculate a 10-dimensional z-value vector. The
decoder mirrors the structure of the encoder. It takes the 10-dimensional latent
vector and passes it through two hidden layers, of size 50 and 100 respectively.
The final output layer of the decoder reconstructs the original input dimension
with size 183.

We initialize the weights of the fully connected layers using Kaiming normal
initialization [15], with the biases initialized to 0.01. During training, we scale
the added noise by a value of 0.001. For our loss function, Eq. (2), we choose an
α of 0.9 and a β value of 0.0001 based on empirical experimentation. We train
with a batch size of 32 for 100,000 epochs, with a learning rate of 0.001. We use
Adam as our optimizer [25], and train over all canonical skeletons in the dataset.

For the DTW we choose a radius of size 20. For our GP Regression model
we implement the ‘ExactGP’ model from GPyTorch [10]. We choose Gaussian
likelihood as our likelihood function, use a Radial Basis Function as our kernel
type, and initialise the mean function as a constant set to zero. We implement
a gamma prior over the length scale with concentration and rate values both set
to 0.1. We train with a learning rate of 0.1 until the loss reaches a threshold of
0.001.
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4.4 Quantitative Results

In this section we evaluate the performance of our system using two distinct
methods. The first method, which we refer to as the Probability Density method
(PD method) is as follows. For each t in the test sequence, we calculate the
probability density of the learner with respect to the learnt distribution at that
point in the sequence for each latent dimension, resulting in a multidimensional
mean. We then take the average of this mean, resulting in a single score for
signing proficiency which we refer to as the Probability Density Measure (PD
Measure). We expect a learner assigned a high manual rating to receive a high
PD Measure and vice versa.

The second method quantifies the number of instances where the learner
deviates from the distribution defined by the Motion Envelope, we refer to this as
the Out of Distribution Count. Specifically, this method counts the occurrences
where the learner falls outside the high confidence region, summing across all
dimensions. The high confidence region is defined as the region that covers where
we expect the true function values to lie with 95 percent probability [39]. This
method is particularly effective at assessing anomaly detection. We expect a
learner assigned a high manual rating to receive a low Out of Distribution Count
and vice versa.

We standardise the resulting scores from our model and the manual ratings
data using z-scoring standardisation. We apply the standardisation across each
rater individually for all their ratings which increases the comparability of ratings
from different raters. We then apply the standardisation on a per sentence level
for the output scores of our system and the manual ratings. This results in
standardised beta coefficients (which range from -1 to +1) when performing the
regression analysis.

Linear Regression Analysis. We first evaluate our system by performing
linear regression between the output scores of our model and the manual ratings
data, measuring the standardised beta coefficient.

The results for the two methods can be seen in Tab. 2. A notable result
here is the difference in scores when assessing using the PD Measure or Out
of Distribution Events. For sentences A, B, C, E, G, I, K, L the first method
achieves the best results, where as for sentences D, F, H, J the second method
performs better. Both methods can be deemed useful. The PD method provides
a more complete score over the entire sequence as all points in time are used in
its calculation. However, it may be skewed negatively by acceptable deviations
in sentence productions that are within distribution but far from the mean, as
these will score relatively low compared to those with smaller distances to the
mean of the distribution.

The Out of Distribution Count method only incorporates events into the
score when the threshold is exceeded, providing a good method for anomaly
detection, countering the downside of the PD method mentioned above.

For some of the sentences, the results for the PD measure and Out of Dis-
tribution Count are both low. One reason for this may be due to a non-linear
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Table 2: Linear Regression Results. Bolded results for β, the Standardised Beta Co-
efficient, indicate the stronger correlation for each sentence out of the two methods. β
represents the degree of correlation between the manual ratings and the outputs of the
system.

Sentence Prob. Density Measure ↑ Out of Dist. Count ↓

A 0.60 -0.15
B 0.19 0.03
C 0.31 -0.28
D 0.37 -0.40
E 0.18 -0.09
F 0.35 -0.70
G 0.37 -0.35
H 0.27 -0.45
I 0.24 -0.09
J 0.00 -0.36
K 0.57 -0.17
L 0.46 -0.45

Table 3: Spearman Rank Correlation Coefficient Results. Bolded results indicate the
stronger correlation for each sentence out of the two methods.

Sentence Prob. Density Measure ↑ Out of Dist. Count ↓

A 0.69 -0.19
B 0.27 -0.20
C 0.31 -0.49
D 0.35 -0.42
E 0.30 -0.15
F 0.43 -0.60
G 0.38 -0.50
H 0.22 -0.51
I 0.20 0.14
J -0.03 -0.43
K 0.56 -0.26
L 0.44 -0.40

relationship between the manual ratings and the output of the system. To inves-
tigate this we present results using the Spearman Rank Correlation Coefficient.

Spearman Rank Correlation Coefficient (SRCC). The SRCC is a measure
of the strength and direction of the association between two variables that are
assumed to be monotonic but not necessarily linear, based on the ranked values
of the data.

In Tab. 3 we show that this metric offers complementary validity to that
in Tab. 2 suggesting that the results are robust and not a spurious outcome of
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metric choice. Furthermore, the strong SRCC scores shows that the monotonic
relationship between the manual ratings and the system scores may be non-
linear.

4.5 Plot Analysis

Fig. 3 showcases the model’s strong agreement with the manual rating data
for an example sentence. The model assigns low and high scores to the correct
learners with respect to the manual ratings data, demonstrating its effectiveness
in SL assessment. The correlation is strongly positive and almost linear.

Fig. 3: Figure showing standardised PD Measures against the standardised manual
ratings for sentence A. The blue points represent the language learners that produced
the sentence, labelled with their predefined signer ID. The black line represents the
line of best fit from the linear regression.

Learner 8 is a significant outlier in this plot, with our system assigning a
mid-level score but being manually rated low. When looking at the Many Facets
Rasch Measurement [37] for severity among raters, it becomes apparent that the
sample is an outlier due to it being rated by the two most severe raters. In this
case, the manual rating may be skewed negatively by their severity.

4.6 Qualitative Results

We now examine our system qualitatively, by using examples of a high and low
scoring SL learner with respect to the learnt Motion Envelope and visualise their
results.
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Fig. 4: Top plot shows a section of from the latent dimension of the Motion Envelope
Confidence Region with encoded SkeletonVAE signals overlayed for Sentence A. Below,
decoded pose data for the latents is visualised for Learner 5 (top), Learner 13 (middle)
and one Native Signer (bottom) for Pose Numbers 165-185 in steps of 5. The red circle
indicates Learner 5 ’s peak deviation from the distribution.

As shown in Fig. 3, Learner 5 and Learner 13 both lie close to the line of
best fit of the linear regression. Learner 5 receives a low overall single score from
our system and is similarly rated by the manual raters whereas for Learner 13
the opposite is true, receiving high scores. As such these two language learners
make a good example for further evaluation.

The plot on Fig. 4 shows time varying latent signals from one of the Skele-
tonVAE dimensions for Sentence A ranging from Pose Number 150 to 250 for
learners and native signers against the learnt Motion Envelope confidence region.
Learner 5 is shown leaving the learnt confidence region at pose number 170, with
its greatest distance from the distribution occurring at 175 before returning to
the distribution. On the contrary to this, Learner 13 stays within distribution
throughout the sequence, coming close to the upper bounds at point but remain-
ing within the confidence region, indicating its variation is acceptable.

This visualisation demonstrates the pipelines ability to temporally determine
where anomalies have occurred, and by how far they differ from the learnt distri-
bution over natural variations. The latent signals from three of the native signers
used to train the Motion Envelope for this sentence are visualised to demonstrate
examples of the natural variation in SL between deaf individuals.

The decoded pose sequences for the two learners and one of the native signers
are displayed below the plot, focusing on the region where the anomaly occurs.
We take the latent signals between Pose Numbers 165 and 185 and decode them
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using the SkeletonVAE visualising every fifth pose within the range. At 165 the
poses for the two learners are similar to each other, and slightly differ from the
Native Signer, but stay within a margin of error. At 170, the arms of Learner
5 move in the opposite direction to Learner 13 and the native signer, who start
to converge. At 175, Participant 13 is furthest in pose from the other two exam-
ples, with the wrong arm in the air. This is reflected as the point at which the
participant is furthest from the learnt distribution. After this, the learner starts
to move towards the direction of the learnt distribution, finally converging back
with the other two examples as shown at pose number 185. This visualisation
provides a spatial context of the error occurring in the skeleton space.

5 Conclusion

Sign Language Assessment tools are useful to aid in language learning and are
underdeveloped. Previous work has focused on isolated signs, classification, or
comparison against a single reference video to assess SL. In this paper, we pro-
posed a novel assessment system to assess the comprehensibility of continuous SL
sequences by modelling the natural distribution in human motion over multiple
native deaf participants.

Our experiments demonstrated that modelling using multiple native signers
can lead to robust and interpretable results. This approach can be used to provide
visual feedback to users in spatio-temporal contexts to aid in SL learning and
assessment. We evaluated our results using real data from language learners and
showed strong correlation between manually rated data and our approach.

As future work, we would like to expand our system to include non-manual
feature assessment as these are important linguistic features that modify the
meaning of SL.
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